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Abstract

A nonlinear, Square-Root Variable-Metric optimization

technique is used to extract time histories for the lift

coefficient, drag coefficient, and bank angle control

variables from radar data of the Space Shuttle Test Flight.

1. This optimization technique solves for these control

variable histories by minimizing a weighted least squares

performance index of the calculated versus experimental

state equation time histories. The state model is a three

degree of freedom representation of aircraft motion.

Three intervals of data are evaluated. In each inter-

val, polynomial functions represent the control variables,

and the peformance index is dependent only on the values

of the polynomial coefficients. The larger of the first

two intervals contained the shorter interval so that the

effect of changing polynomial order and interval length

could be explored. The third interval compared the calcu-

lated parameter histories with NASA's BET parameter histories

with good correspondence. For all three intervals the

calculated state histories closely matched the experimental

state histories.

These results show that given an appropriate state

model, this optin'ization technique is useful for quickly

obtaining good and inexpensive estimates of certain desired

parameters..

Approved for public release; distribution unlimited

viii



NONLINEAR PARAMETER IDENTIFICATION:

LIFT COEFFICIENT, DRAG COEFFICIENT, AND

BANK ANGLE HISTORIES FOR THE SPACE SHUTTLE

TEST FLIGHT I

I Introduction

Evaluating the performance of a new and technologic-

ally advanced engineering system requires a thorough, and

often redundant, study of test data. Agreement between

these different studies helps to reinforce any conclusions

derived from the tests. The Space Shuttle Test Flights

will, accordingly, be very well studied and documented.

The Space Shuttle trajectory is computed several different

ways, and this data enables important parameters, such as

lift coefficient, drag coefficient, and bank angle histories,

to be determined. These parameter histories give insight

into the performance of the Shuttle, so that expected

performance parameters can be evaluated for their accuracy.

NASA computes a "Best Estimated Trajectory" (BET)

(Ref 7), containing estimates of the parameter histories,

by using the data from the Aerodynamic Coefficient

Instrumentation Package (ACIP), which is on board the Space

Shuttle, and various radar data. The ACIP gives gyro and

accelerometer data, whereas the radar gives optical and

telemetry data. This data is combined, through a linear



stochastic estimation process, to produce an optimal six

degree of freedom (DOF) model of the Space Shuttle's trajec-

tory (Ref 3, 4, 5, 6).

Although NASA's BET is a good method for estimating

the trajectory and motion of the Space Shuttle, it may take

a few months to synthesize all of the available data into a

BET. Yet the radar data, such as the data from the Multi-

sensor Space Position Report (Ref 8:1), is sufficient to

calculate three DOF trajectories and performance parameters,

such as CL, CD, and ,~.This report proposes a simple and

inexpensive computer algorithm to evaluate this data and

come up with a good estimate of some of the performance

parameters of the Space Shuttle. This could provide an

on-line estimate, which evaluates the radar data as it comes

in. its results could be compared to the BET in post data

analysis, which would help locate possible software errors

in the two estimation procedures and be used to confirm

wind tunnel data. The immediate results would also be

useful in evaluating the trajectory should anything go

wrong during the final landing phase of reentry.

Problem Statement and Method

This report tests a parameter estimation method which

can be used to evaluate the Space Shuttle radar data as it

becomes available. The method proposed is a slightly

modified Davidon-Fletcher-Powell (DFP) optimization technique

2



derived by Williamson and Hull (Ref 4:1). The dynamical

system from which the parameters are identified can be

closely approximated without the need for linear stochastic

noise modeling by using a deterministic nonlinear state

model (Ref 4). The DFP variable-metric method, using such

a model, is an efficient, quasi second-order numerical

algorithm that minimizes a performance index. This perfor-

mance index is calculated from a weighted least squares fit

of the calculated onto the experimental (radar data) state

histories. The calculated state histories are dependant

upon the parameter histories through the coefficients of a

polynomial fitted to each parameter history. These coeffi-

cients are the variables that are changed to minimize the

performance index. The parameter histories that this report

identifies are the lift coefficient, the drag coefficient,

and the bank angle histories.

The data used to calculate the performance index

came from two sources. The first set of data came from the

Mulitsensor Space Position Report (Ref 8: 1). Its trajec-

tory histories supply sufficient information to derive the

time histories of the parameters CL, CD, andt through some

optimization technique, such as the algorithm in this report.

As this algorithm was being evaluated using the Multisensor

Report data, the NASA BET data became available. Although

the BET data was itself derived from a parameter estimation

process, it contains trajectory history data as in the

3



Multisensor Report. The parameter histories obtained by

the algorithm using these trajectory histories were compared

to the BET parameter histories. The degree of correspondence

between these parameter histories provides a measure of the

accuracy of the algorithm.

Organization

Chapter II discusses the procedure used to extract the

parameters from the radar data. This will include a descrip-

tion of the Square-Root Variable-Metric algorithm and an

explanation of the mating of the state equations and data.

Chapter III explains the problems and pitfalls of manipulating

the algorithm to provide the best results. Chapter IV presents

the results and interprets their significance. Chapter V

summarizes the',report and gives an explanation of the useful-

ness of this parameter identification method.



II Procedure

Methods of Parameter Identification

Many techniques have evolved that solve for variables

of interest from some collection of input. Each method has

proven useful at some time, although the degree of accuracy

between methods varies greatly. For instance, the BET gives

accurate parameter estimations given all of the available

data. Yet it was a time-consuming process to get the BET.

On the other hand, there are gradient optimization techniques

that are quick and inexpensive, yet only crudely approximate

the parameters. But there are certain common characteristics

of parameter estimation methods for a dynamical system. Hull

and Williamson (Ref 4:1) explain:

In general, the parameter estimation problem
for a dynamical system consists of finding the
values of a set of p constants C and n initial
states Xo (assuming to=O) such that the solution
of the dynamical system

fits the experintental data. The data is fit by



minimizing the weighted least squares performance
index

T

were the subscript k denotes the time at which
the experimental data is taken and W is a positive-
definite diagonal matrix whose elements are the
inverses of the measurement convariance. The
quantity Y is a q-vector of the experimental values,
and G is q-vector of computed values which is related
to the state of the dynamical system, that is,
G = G(t,X).

The technique of parameter identification proposed in

this report is a compromise between the crude and the sophis-

ticated methods. It is a nonlinear method, which implies

that the state equations would exactly map the motion if the

three DOF model was an exact representation of the real

world. The Square Root Variable-Metric algorithm of

Williamson's (Ref 9:107) chooses O= [-:o C]T , where Xo is

the initial state vector and C is a vector of constants

associated with the parameter histories, to minimize the

6



weighted least squares performance index. The algorithm is:

1. Guess p and a positive-definite, symmetric
matrix S. Compute J(p), Jp(p) (the derivative
of the performance index with respect to
and H = SST .

2. Compute the change in p from the formula

P = - 0< HJT (3)

using a one-dimensional search to determine
the scalar step size - which minimizes J in
the -HJT direction. This search yields a new
function value J, where

J +J(j3+g) (4)

3. Compute a new gradient and form the difference

ajT j _T (5)

4. Compute a new metric H from the relation

H= S (6)

where

= S[I - (-l/A)STyyTs] (7)
A YT H ajT Y TJ + &T

= [1+(I-B/A)-] / (B/A), B = yTssTy

If v is imaginary, use v= 1 in the above
expression for S.

5. If the process has not converged, repeat the
procedure. Convergence has occurred when cv-l,
A--O and B-.*O simultaneously.

Since the metric H is calculated as the S matrix times

its transpose, it will always be positive definite. The

positive definiteness of H means the performance index will

decrease on every iteration, regardless of the accuracy in

calculating the S matrix. Likewise, the one-dimensional

7



alpha search need not be extremely accurate, as is necessary

with the unmodified DFP algorithm, to maintain a positive

definite H.

Numerical Integration and Differentiation

The method used to numerically calculate J(P) is as

follows:

1. Guess values for X and C to give X= [C]T.

2. Compute Yo - G(to, Xo ) from guessed Xo. (Note
that in this report the initial state vector
Xo was assumed to be equal to Yo and p was
therefore = [C]T.)

3. Integrate X = F(t, X, C) from to to ti . This
enables Y - G(tl,.Xl) to be computed. In this
manner, iAtegrate iX and calculate YK - G(t , XK)
until the final time (the last observation is
reached.

4. Using Eq. (2), compute J(p).

The gradient of J(p), J (), is a vector calculated

through numerical differentiation by perturbing each element

of and differencing the performance indexes that are calcu-

lated using the perturbed / vectors. The central difference

formula
S(8)

is the differencing technique used in this report, where

is the perturbation in the jth element of P. This means

that each element of J requires two calculations, and hence

two integration loops, for J. The central difference formula



was chosen because it is uncomplicated yet provides a

truncation error of order % Therefore, the smaller the

&., the better, but there is also a limit to how small

can be due to computer round-off error.

Hull and Williamson (Ref 4) say that "in order to have

the greatest number of correct significant figures in a

derivative, it is necessary to select the O which causes

the largest change in J while keeping the truncation error

of the derivative in check." J( f. _ ( ), and hence J.

are computed using

if WI 34- (9)
if A 1

where 6 is a prescribed tolerance.

State Equations

The algorithm uses the following state equations to

model the three DOF motion of the Space Shuttle:

X(10-15)

9



x"

×, V, x4= I11

Fig. 1. Flat-Earth Coordinate System

These equations are derived from a flat-Earth coordinate

system (Fig. 1) where x3 is the altitude, x, and x2 are the

planar coordinates orthogonal to the altitude such that the

coordinate system is right handed. The directions of x, and

x2 depend on which data set is used. The state N is the

magnitude of the velocity, x5 is the azimuth, and x6 is the

flight path angle.

Data Manipulation

The algorithm requires an experimental trajectory (YK)

as an input. The YK is a time history of the states. The

radar data can be manipulated to give state vector values

at each time increment k. This report used two sources of

radar data to yield YK, the Multisensor Report data and the

10



BET data. The data from the Mulitsensor Report (Ref 8)

was with respect to an Earth Surface Fixed (ESF) Cartesian

Up- X 3

X2-0 - N.Yo h

Fig. 2. Earth Surface Fixed Coordinate System

coordinate system (Fig. 2) which rotates with the Earth.

Because the time intervals evaluated were very short (less

than two minutes in every case), the rotation of the Earth

was ignored in transforming the radar data into YK" As

shown in Figure 2, the ESF coordinate system had the

beginning of runway 23, EdwazrsAFB, as the origin, with the

xlD axis positive East, the x2D axis positive North, and

the x3D axis positive up. For YK, the states x, and x2

were given by xlD and x2D data, respectively. The azimuth,

x5D, was measured from North with the clockwise direction

LI
" -- .: ....... . , ., ,- -- r -., -. . .. . . . . - ---- 11'



v-I

being positive, and the flight path angle, x6D, was the

angle between the velocity vector and the (XlDI X2D) plane.

For YK the states x5 and x6 were given by x5D and x6D,

respectively, and N was given by the magnitude of the

velocity, which the Multisensor Report also provided.

The only state that needed to be calculated from the

22.

X4040

X3 - Doton

Fig. 3. Runway Coordinate System

given data was x The Multisensor Report also provided the

altitude of the Space Shuttle. Therefore x3 was given by

the Space Shuttle altitude minus the altitude of the runway.

The BET data uses a similar coordinate system (Fig. 3).

The XiD axis is positive in the direction of the runway; the

12
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positive X2D axis makes up the third coordinate for the right

handed coordinate system with the X3D axis positive down (Ref 1).

Again, x5D, (asimuth) is measured from North, clockwise

positive, and x6D was the angle between the velocity vector

and the (xlD, X2D) plane. To arrive at state elements xI and

x2 of YK a rotation of 25.5 degrees was added to the x5 term

in each of the kl and k2 equations. This gave the k, and

x2 equations a corrected azimuth measured from the x 2D axis.

Although the Multisensor Report provided the altitude

of the Space Shuttle, for the BET data the altitude, and

therefore x3 , the altitude of the Space Shuttle measured

from the origin at runway 23, needed to be calculated using

the cosine formula for triangles

Figure 4 shows the geometry that this equation was derived

from. This equation is e-plicable as long as x3D is negative

(Space Shuttle is above the horizon). Since this report is

concerned with data from radar stations along the West Coast,

the problem of x3D positive was not considered. The x5 and

x6 elements of YK are given by X5D and X6D respectively.

Finally, the magnitude of the velocity, x4 , is calculated

as the square root of the sum of the squares for X1D' X2D'

and X3D (which are provided by the BET).

13



X30

Fig.. 4. Geometry for Calculating x.
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Parameters

The parameter histories of interest are CL, CDP and

The algorithm requires initial guesses for these parameter

histories. To solve for the initial time history for CL the

equation of motion in the vertical direction

L cos ) C0S (.,) - L = ( (17)

was used. The cos A) term was chosen to be equal to one.

This approximation is based upon the knowledge that /t for a

heavy glider like the Space Shuttle should not exceed 45

degrees, and in most cases it will be below 30 degrees.

Therefore, at worst, this is a 70% accurate approximation.

Furthermore, vz(tj), which is the acceleration in the 2 (up)

direction at time tL, can be approximated by the central

difference formula

Therefore, representing L as s ,)v 5 C(, we have

As v. j((t"' - + z.i] 1 2). in (19)
S Vk.cYY itraofitrs

where n is the length of the time interval of interest

divided by the step size taken between data points (n is the

total number of data points for each of CLP CD, and / ) and

where X(t[) is the flight path angle at time ti. The air

density ( history is also derived from a Least Squares

polynomial fit to the air density data given by References

7 and 8.

16
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For the Multisensor Report data, the CD time history

guess was derived from lift over drag graphs in Reference 1.

The CD history for the BET data was calculated using the lift

over drag (L/D) data already available from the BET. However

the initial CL and CD histories are calculated, the closer

they are to the true CL and CD the faster the algorithm will

converge. These initial histories will be compared to the

converged histories to determine whether or not they provide

a good initial guess for the estimation method.

For both sets of data the X,* initial time history was

derived from the k5 state equation, again using a discrete

time central difference to represent the derivative such

that

CC S(-, S - V

Note that ', 7 , and v represent flight path angle, azimuth,

and magnitude of the velocity, respectively, as did x6 , x5 ,

and x4 in the x5 equation.

Presently, 0 is made up of three [nxl] vectors CL' CD,

andj& (as mentioned previously, n is the number of data

points for each of CL , CD, and &), hence, is a '3nxl]

vector. Since the performance index is numerically differ-

entiated with respect to each element of i" , a smaller

number of elements of P will greatly reduce computation
time. Because n is the time interval length divided by the

time increment size, if n is small then either the increment

17
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size is large or the interval length is short. Since it

is desired to fit the data points to a smooth "true" function

of the parameters, a relatively short increment size is re-

quired whether the interval is long or short. Therefore, the

size of n is predominately dependent upon the length of the

interval. To reduce the computational load by decreasing

the size of n would then mean a short interval. This would

lead to patching short intervals together in order to obtain

good parameter histories for a rnwonable length of time.

To make n as large as possible and still cut down on

the length of i , a Least Squares polynomial fit is made to

the CL, CD, and /, histories. Since the true CL, CD , and

time histories will be continuous functions of time, a

Least Squares polynomial fit to the discrete time parameter

data points is a reasonable model for their true histories.

The resulting coefficients are used as P and are called upon

to calculate CL, CD, and ,/., at any given time, for use in

the state equations.

A programming decision must be made when deciding the

order for the polynomials. Reducing the size of without

sacrificing interval length was the initiative for using a

Least Squares polynomial model of the parameters, therefore

it is desired to fit the interval with the smallest order

polynomial, thereby decreasing the length of P , and yet

maintain an accurate functional model of the parameter

histories. A rough plot of the initial parameter histories

18



will give an idea what order polynomial will best approximate

the true parameters. Thus, within this chapter the methodology

for identifying parameters is explained as a weighted least

squares minimization process. The Square-Root Variable-Metric

algorithm, used in this report, minimizes the performance

index, J, by a modified DFP optimization technique which

is quasi second-order with respect to the parameters of

interest (W). The derivative of J with respect to is

calculated numerically using the central difference formula.

The state equation model of the three DOF motion of the Space

Shuttle was a flat Earth approximation. The experimental

state histories were extracted from the radar data according

to the coordinate system used. The initial parameter histories

were derived from the equation of motion in the vertical

direction (for CL), Reference 1 (for CD), and the x5 state

equation (for /A). Finally the method of least squares was

used to fit polynomialsto the parameter histories, and the

length of the 1 vector was reduced by using the coefficients

of these polynomials as

19
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III Programming Considerations

After fitting the appropriate polynomials to the

guessed parameter histories, as was discussed in Chapter II,

the algorithm is ready to find the optimal / . This

chapter will expand upon some of the more delicate program-

ming characteristics of the algorithm.

One Dimensional Search

The one dimensional search finds the value of < that

minimizes J in the -HJT direction.

min J(Ia +4/G)

(21)

where

Note that it is this -HJT that supplies the algorithm with

quasi second-order convergence characteristics, since as H

is updated it approaches the inverse of the Hessian matrix.

There are many methods for arriving at the correct - but

all methods have certain inherent problems. The algorithm

becomes very sensitive to very small changes in (3 as

convergence is approached. Therefore, it is important to

20



keep from choosing a 3 that give a value for J too far

beyond the minimum in the -HJT direction since even a

small & added to the / can cause great changes in

J. This could result in improper updating of the S matrix

and likewise lead to searches in the wrong direction on

following iterations.

The method used to calculate in this report

(Ref 2) involved setting equal to . + , where

i=i,2,...; and , the initial < , is 0., and

is a small constant of magnitude less than 0.1. This

new ><. is used to calculate = 4- 1 3 Z I

and, hence, J ( This Ji ( -) is compared to

J(-l C °-,) • If J, is less than JC-l, several

decisions must be made before the minimizing c-, can

be found. If the difference between Jj and Ji-i is less

than some tolerance, then J -1 can be considered the

minimum. If the difference is greater than this

tolerance, the size of is decreased and the

search is restarted from JZ-l. This procedure of decreasing

and restarting the search continues until (Jt-i -

JW)/J!-l is less than the required tolerance. Note that

-must indicate the sum of all initialized and reinitial-

ized step sizes. Also, since it will remain positive

definite, the tolerances need not be extremely small to

21



maintain good convergence of the algorithm.

Convergence Criteria

The convergence criterion is based on (Jo - Ji-l)/Jo

less than some tolerance, where Jo and J*-I are minimum

values of the performance index from two successive search

directions. If (Jo - JZ-l)/Jo is less than the prescribed

tolerance, and, likewise, A -0, B -- 0, and ' -'1, then

the algorithm has converged. As convergence is approached,

the minimum J, J -1 , may be the same as the value of Jo if

the one dimensional search only takes one step before its

tolerance is satisfied. For this case, if the percentage

difference (Jo - J(-l)/J is greater than the prescribed

tolerance, then this tolerance, and the tolerance for the

one dimensional search are decreased and the one-dimensional

search is restarted. If the percentage difference is less

than the prescribed tolerance, and A, B, and - have not

converged, then the S matrix is reinitialized to the identity

matrix, I, and a gradient step is taken. This is done on

the chance that H is not converging to the inverse Hessian

matrix and needs to be reinitialized. Generally, the

algorithm has reached convergence before this step is used.

Differentiation

Another programming consideration is the choice of the

best C for the numerical differention of J(Y). Hull

t

22
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and Williamson (Ref 4) explain a method for calculating the

best 6 which involves taking second nurArical derivatives.

Instead, to simplify the algorithm further, derivatives

were calculated with several different values of C A

value of E = I.OE- gave the largest number of significant

digits in the derivative without it being affected by

computer roundoff, making this the of choice for this

algorithm.

Nondimensional Coefficients

For higher order polynomials, such as the sixth order

polynomial used to fit the parameter histories, the relative

magnitude between coefficients may be very large. Since

these coefficients are all differentiated using the same

size 6 , the elements of the J vector may likewise be of

widely varying magnitudes. This makes the algorithm more

sensitive to some elements than others, thereby retarding

the overall update of S. Also, this disparity in J element

magnitude will increase the truncation error, hence, weaken-

ing the ability of the algorithm to converge.

This algorithm therefore used a nondimensional

vector to make the magnitudes of the polynomial coefficients

more "even", thereby making the J elements about the same

order of magnitude also. This involved multiplying

the coefficients by the final time of the interval to the
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power that the coefficient has in the polynomial (for instance,

a second order polynomial, C0 + C1 t + C2t
2 , would have Co ,

Citf and C 2 tf2 as the nondimensional coefficients). These

elements of had to be redimensionalized, by dividing by

the appropriate power of tf, before calculating the CL(t0),

CD(t,), and ,A^(ti) values called for in the state equations

during the integration.

Weighting Matrix

The weighting matrix had to be adjusted to find the

best choice of diagonal elements for the fastest convergence.

The Multisensor Report gives an idea of the uncertainties

to expect of radar data (Ref 8) as shown in the Appendix.

The use of a diagonal weighting matrix is a restriction to

the full inverse measurement covariance matrix weighting.

Although the statistical description of the radar data state

errors are correlated, a diagonal, uncorrelated, error model

was used to simplify the computations, and hence, speed

the convergence of the algorithm. The fastest convergence

was achieved by weighting the values of x5 and x6 (angles)

up to eight orders of magnitude more than the xI , x2, and

x3 (distances) states, and up to four orders of magnitude

more than x4 (velocity). Comparisons are made in Chapter

IV of runs using different weights.
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IV Results

Two runs were made, using Multisensor Report data, to

test the convergence characteristics of the algorithm. Once

the algorithm was working properly, a run using BET data

was fully converged and analyzed. The two test runs, (call

them Run 1 and Run 2), were straight landing approaches.

Therefore the x5 equation (rate of change of azimuth) was

nearly zero, implying very small bank angles. The BET data

was taken from a turn. This arrangement of data runs allowed

evaluation of the algorithm characteristics during a rela-

tively simple flight history before testing the performance

of the algorithm during a period of active maneuvering.

Run 1

The first run spanned a seventy-eight second time inter-

val, ranging in altitude from 8667.5 feet to 14.9 feet.

Table 1 lists the calculated versus experimental state

histories, and the difference between them, element by element.

This run used 500 seconds of Central Processor (CP) time

to converge to A = 9.2 - 6, B = 3.6 E - 5, and o = 1

using sixth order polynomials to fit the parameter histories.

The converged parameter histories are shown in Figures 5, 6,

and 7 along with the initial parameter histories. These

figures display the effectiveness of the method used to

calculate the initial parameters. The curves show corre-

sponding peaks and valleys and are of the same order, which
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Table I

State Histories (Run 1)

Time x, of C x, of G x3 of C xv of G x,, of G x. of G
(sec) xY. of Y x. of Y x3 of Y xv of Y X, of Y x4 of Y

x, -DIFF x.,-DIFF x3 -DIFF x,-DIF x,-DIFF x6-DIFF
(ft) (ft) (ft) (ft/sec) (rad) (rad)

6.0 25154.3 12182.7 8049.5 582.2 4.26021 -. 352506
251!4.3 12285.1 8085.3 575.7 4.2481 -. 34208

-40. 102.4 36.8 -6.5 -.01211 .010526

18.0 19323.5 9539.4 5724.3 552.9 4.29792 -.345674
19219.4 9652.1 5688.8 562. 4.2603 -.35954
-104.1 112.7 -35.5 9.1 -.03762 -.013866

30.0 13737.8 6967.9 3504.7 541.5 4.25736 -.343423
13415.6 6982.5 3533.5 531.8 4.2324 -.32987
-322.2 14.6 28.8 -9.7 -.02496 .013553

42.0 8231.2 4137.8 1482. 542.6 4.22642 -.269352
7078.5 4112.8 1336.6 543.6 4.281 -.33685
-252.7 -25. -145.4 1. -.02542 -. 0674-9

54.0 2710.5 1279.8 282.5 502.7 4.25053 -. 102L91
2400.7 11P2.3 142.2 5C0.6 4.2726 -.04538

-309.8 -97.5 -140.3 -2.1 .02207 .057111

66.0 -2228.9 -1074. 74.5 405.4 4.2807 .003491
-25?7.5 -llP0.2 45.4 402.7 4.26-:R -. 01047

-208.6 -105.2 -29.1 -2.7 -.0169 -. 013961

78.0 -61LL. -2892.5 55.3 321.8 4.26536 -.038138
-6W,8.P -3066.7 14.9 320.8 4.2726 -.00524
-305.9 -174.2 -40.4 -1. .00724 J .002898

DIFF = Difference between x- of Y and x- of G

it2
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means the initial parameter histories did not require exten-

sive changes, implying fast convergence. Although the

magnitudes differ somewhat for CL and CD, this can be

attributed to the inaccuracy of the reference area s(zc6oW) and

the average value used for w (198,200 lb), which were used

in calculating the initial parameters. The accuracy of the

algorithm for this run is on the order of 100 ft for the

xl, x2 , and x3 states, 5 ft/sec for x4 , and 0.02 rad for

states x5 and x6 (Table I).

Run 2

The second run spanned the first thirty-nine seconds

of Run 1 and used 500 CP seconds to converge to A = 5.2 E - 9,

B = 7.9 E - 9, and c = 1. The order of the polynomial

used to fit the parameter histories was varied from second

to sixth order. Figure 8 shows the converged lift coeffi-

cient histories for the two extreme cases of second order

and sixth order. The second order CL curve slices through

the hills and valleys of the sixth order curve, yet, as

Tables II and III show, the state history fits for both

runs are nearly the same. This illustrates the importance

of choosing a polynomial of large enough order such that

all of the gross characteristics of the true parameter

history are mapped.

This interval was also used as a comparison to Run 1

to study how choice of interval length and order of poly-
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Table II

Second Order Polynomial State Histories (Run 2)

Time x, of G x. of G x, of G xq of G xs of G x, of'
(see) x, of Y x, of Y x) of Y x 1 of Y x. of Y x of Y

xj-DIFF x -DIFF x .- DIFF x -DIIF x -DIFF xb-D!Fi(ft) (ft) (ft) (ft/sec) Itad) (i--d)

3.0 26636.5 12931.6 864P.4 580.1 4.25241 -. 366667
26603.4 12965.6 8667.5 582.5 4.2394 -. 4208

-33.1 34. 19.1 2.4 -.01301 .024587

9.0 237 2.2 11551. 7400.4 570.4 4.2816 -. 368668
23532.1 11621.9 7504.6 565.3 4.2569 -. 35605

70.9 104.2 -5.1 -.0247 .012618

15.0 20834.5 10240.7 6204.2 562.1 4.2-'054 -. 346519
20503.1 V 312.7 6291. 560.4 4.2638 -. 370C1
-141.4 72. 86.8 -1.7 -.02674 -.0210391

21.0 17o59.4 89?8.8 5100.8 552.5 4.28144 -.324626
17747.8 8986.9 5108.9 558.9 4.2534 -. 34208
-210.6 48.1 8.1 6.4 -.02804 -.017454

27.0 15137.1 7606.9 4075.3 542.4 4.25957 -.313999
14830.2 7656. /045.3 540.5 4.2603 -. 32114
-306.9 49.1 -30. -1.9 .00073 -.007141

33.0 12398.9 6227.P 3061.4 534.8 4.23146 -. 330,'14
12038.7 6282.2 3009.4 529.6 4.2185 -. 34208
-359.2 54.4 -52. -5.2 -.01296 -.012066

39.0 9754.7 4799.2 1957.1 534. 4.2035 -.380419
9328.2 4862.2 1899.9 538.8 4.2045 -. 3577
-426.5 62.3 -57.2 4.8 .001 .022719

DIFF = Difference between XL of Y and x- of G
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Table III

Sixth Order Polynomial State Histories (Run 2)

Time x of G x ofG x of G x of G x of G x of G
(sec) x of Y x of Y x of Y x of Y x of Y x of Y

x -DIFF x -DIFF x -DIFF x -DIFF x -DIFF x -DIFF
(ft) (ft) (ft) (ft/sec) (rad) (rad)

3.0 26636.5 12931.6 8648.4 580.1 4.25241 -.366667
26603.4 12965.6 8667.5 582.5 4.2394 -.34208

-33.1 34. 19.1 2.4 -. 01301 .024587

9.0 23732.2 11551. 7400.4 570.4 4.2815 -. 35E6:8
23603.4 11621.9 7504.5 565.3 4.2569 -.35605

70.9 104.2 -5.1 -. 0247 .012618

15.0 20834.5 10240.7 6204.2 562.1 4.29054 -.348619
20693.1 10312.7 6291. 560.4 4.2638 -. 3701

-141.4 72. 86.8 -1.7 -. 02674 -.021391

21.0 17058.4 8938.8 5100.8 552.5 4.28144 -.324627
17747.8 9-5.9 5108.9 558.9 4.2534 -.34208

-210.6 48.1 8.1 6.4 -.02804 -.017453

27.0 15137.1 7605.9 4075.3 542.4 4.35957 -.314
14830.2 7656. 4045.3 540.5 4.2603 -.32114
-306.9 49.1 -30. -1.9 .0C073 -.00714

33.0 12398.9 6227.8 3061.4 534.8 4.23146 -.330014
12039.7 6282.2 3009.4 529.6 4.2185 -.34208

-359.2 54.4 -52. -5.2 -.01296 -.012066

39.0 9754.7 4799.9 1957.1 534. 4.2035 -.380419
9328.2 4862.2 1R99.9 538.8 4.2045 -.3577
-426.5 62.3 -57.2 4.8 .001 .022719

DIFF = Difference between x. of Y and x of G
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nomial affects the accuracy and convergence of the algorithm.

A comparison of Tables I and II, both calculated using

sixth order polynomials, shows that Run 2 was only slightly

more accurate than Run 1 at fitting the experimental state

histories over the same time intervals. Yet, comparing

Figures 9, 10, and 11 to the Run 1 figures shows that the

true parameter histories are more fully described by Run 2.

Therefore, the appropriate length of the interval and the

polynomial order are very dependent upon each other for

properly describing the true parameter histories. Again,

the initial parameter histories give a good means for

choosing an appropriate polynomial order.

This interval was also used to test the effect of

different W diagonal elements. Tables IV-VI represent

three state histories, each with a different W. Table IV

uses 1.E4 for the first three diagonal elements of W, (call

them wl, w2, w3, respectively), 1. for w4, 1.E-4 for w5

and w6. This represents very accurate radar measurements

for the xl, x2, and x3 states relative to the measurements

for the x5 and x6 states. Table V, W2 , is with all six

diagonal elements as 1, such that all six radar measurements

are assummed of equal accuracy. Table III is the opposite

extreme to Table IV with, wl, w2, w3 as l.E-8, w4 as l.E-4,

w5 and w6 as 1. Comparing the convergence characteristics

of the algorithm using these different weighting matrices
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Table IV

State Histories for Wi (Run 2)

Time x, of G x, of G xofG X, of G x. of G x. of G

(sec) x, of Y x, of Y x- of Y x4 of Y x of Y x6 of Y
x,-DIFF xj-DIFF xzDIF x.-DIFF xDIFF x#-DIFF

(ft) (ft) (ft) (ft/sec) (rad) (rad)

3.0 26607.2 12938.7 8678.1 584.9 4.27907 -. 330665

26603.4 12965.6 8667.5 582.5 4.2394 -.34208

-3.8 25.9 -10.6 -2.4 -.03967 -. 011415

9.0 23606.9 11641.5 7553.5 569.6 4.30936 -. 344296

23632.4 11621.9 7504.5 565.3 4.2569 -. 35605
25.5 -19.6 -48.9 -4.3 -.05246 -.01175-

15.0 20683.5 10348. 6331.5 573.8 4.28289 -. 37 :847

20693.1 10312.7 62l. 560.4 4.2638 -. 377O1

9.5 -35.3 -40.5 -13.4 -.01909 .0C8837

21.( 17"53.2 P994.8 5089.7 575.7 4.2808 -. 343946

17747.8 8985.9 51n8.9 558.9 4.2534 -. 34208

-5.4 -7.9 19.2 -16.8 -. 0274 .oo1866

27.0 14R22.3 7636.7 4032.2 554.2 4.27064 -.29:67
14F30.2 7655. 4045.3 540.5 4.2603 -. 32114

7.9 19.3 13.1 -13.7 -. 01034 -. 02-273

33.0 12044.3 6283. 3017.5 534.3 4.24955 -. 350458
12039.7 6282.2 3009.4 529.6 4.2185 -. 34208

-4.6 -.p -8.1 -4.7 -.03105 .008378

39.0 9369.6 4 49.3 1915.' 548.4 4.1116 -.283106

9328.2 4862.2 1899. 538.8 4.2045 -.3577
-40.4 13.9 -15.2 -9.6 .0929 -.074594

DIFF = Difference between xL of Y and xj of G
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Table V

State Histories for W2 (Run 2)

Time x, of G x, of G x, of G xq of G x5 of G x, of G

(sec) x, of Y x, of Y x 3 of Y xq of Y xf of Y x, of Y

x1 -DIFF x,-DIFF x,-DIFF xs-DIFF x:-DIFF x4-DIFF

(ft) (ft) (ft) (ft/sec) (rad) (rad)

3.0 26580.7 12925.6 8659.1 5n7.9 4.27551 -. 338229

26603.4 12965.6 8667.5 582.5 4.2394 -. 34208

22.7 40. 9.4 -15.4 -.03611 -.003951

9.0 23604.9 11615.6 7509.5 558.1 4.30572 -. 35C588

23632.4 11621.9 7504.6 565.3 4.2569 -. 35605

27.5 6.3 -4.9 7.2 -. 048E2 -.005462

15.0 20716.3 10343.6 6309.9 573.8 4.28822 -.357958

20693.1 10312.7 6291. 560.4 4.2638 -.37001

-23.2 -30.9 -18.9 -13.4 -.02442 -.f 02052

21.0 17-41.3 P985.2 5102.9 580. 4.28332 -. 333341

17747.F P o5.9 5108.9 558.9 4.3534 -. 34208

6.5 1.7 6. -21.1 -.02992 -.008739

27.0 14819.2 76411.1 4045.5 546.6 4.27632 -.3112"2

14e30.2 7655. 4045.3 540.5 4.2603 -.32114

11. 11.9 -.2 -6.1 -.01602 -.0C9858

33.0 12056.2 6208.9 3010.7 544.1 4.23853 -.342631

12039.7 6282.2 3009.4 529.6 4.2185 -.34208

-16.5 -16.7 -1.3 -14.5 -.0;003 -.C00C551

39.0 9325.3 4848.9 1905.2 522.9 4.22591 -. 322315

932P.2 4P62.2 1809.9 538.8 4.2-45 -. 3577

2.9 13.3 -6.3 15.9 -.02141 -.035385

DIFF = Difference between x of Y and x of G
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Table VI

State Histories (Run 3)

Time x, of G x, of G x3 of G x, of G X, of G x, of G
(sec) x, of Y x, of Y x 3 of Y xq of Y xy of Y x, of Y

x, -DIFF x,-DIFF x3 -DIFF xv-DIFF x -DIFF x4 -DIFF
(ft) (ft) (ft) (ft/sec) (rad) (rad)

3.0 -53292.5 -6i67.2 17065.8 605.7 -1.19648 -.2557E3
-53262.6 -6175.3 17064.7 613.1 -1.21249 -.250091

29.8 -8.1 -1.1 7.4 -.016 .o6

12.0 -4q293.1 -2820.2 15593.5 605.2 -1.46558 -.297804
-49092.5 -2987.3 15695.2 599.2 -1.47314 -.278401

200.6 -167. 101.7 -5.9 -.008 .019

21.0 -44526.7 -856.4 13870.4 606.2 -1.76756 -.341253
-443P.9 -872.7 13913.3 609.9 -1.67224 -.381764

P7.8 -16.3 42.8 3.7 .095 -.041

30.0 -39500.2 -32.0 11957.9 603.5 -1.91483 -.3P8649
-39482.7 102.3 11881.5 602.9 -1.09473 -.381707

17.4 135.1 -76.3 -.6 .01 -.0C4

39.0 -34513.3 209.2 9915.7 594.5 -1.98017 -. 3858?8
-341,'61.1 230.7 9999. 592.1 -1.99489 -.759206

52.1 -68.5 82.3 -2.4 -.015 .017

48.0 -20584.3 375.4 8059.8 576.2 -2.00653 -.?32453
-29512.6 256.9 8217.4 578. -1.97712 -.351C77

71.7 -118.5 158.5 1.8 .029 -.019

57.0 -24736.1 510.8 6301.3 575.5 -1.98293 -.410185
-24670. 3P5.1 6461 . 573.2 -1.9584 -.376647

66.1 -125.7 160.4 -2.3 -.002 .034

DIFF = Difference between x.- of Y and xL of G
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provides a method for choosing the best weighting matrix.

As would be expected, the heavily weighted states

converged better for all three cases. Table V shows that

the algorithm ignores the small x5 and x6 histories

because they contribute little to the performance index

compared to the xl, x2, and x3 states. Table III shows

the order of weighting according to the Appendix, where

the range (xI, x2 and x3) has uncertainties on the order

of 50 ft and the azimuth and elevation measurement (x5 and

x6 ) uncertainties are five to seven magnitudes smaller at

2.E-3 rad to 2.E-5 rad.

Table IV has the best fit for the states x1 , x2, and

x3 but the algorithm never converged. This can be explained

by the extremely small weights for x5 and x6, thereby

causing the algorithm to ignore these states when computing

the performance index. For this reason, the parameter

histories, which are very dependent upon the x5 and x6 states

(see the state equations), did not converge to the proper

values. The same reasoning applied to the Table V weights,

for which the run did not converge. Therefore, although

the weighting matrix for Table III had a less accurate fit

to the experimental trajectory states xI , x2, and x3, it is

the matrix that most closely represents the true error model.

The errors for the states in Table III are representative of

the magnitude of the errors that can be achieved by this
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algorithm while proviaing converged (good) parameter

histories.

Run 3

The third run used data from the BET as the experi-

mental values. As was previously mentioned, the BET

provides state history data which was used in this run.

Since the BET also provides the C Land C itre o

this trajectory data, the converged algorithm should yield

similar parameter histories. This allows the algorithm to

"prove" itself against the BET's parameter estimation

procedure.

This run used 500 CP seconds to converge to A =l.E-7,

B =6.E-5, and c,< = 1. The state time histories are

listed in Table VI. The initial and converged parameter

histories are portrayed in Figures 12, 13, and 14. Notice

that the bank angle fit was very good, as the accuracy of

the x 5 state history fit implies, although the initial and

converged parameter histories are significantly different

in magnitude. This shows the ability of the algorithm to

converge given a poor initial

Because the lift to drag ratio (L/D) can be calculated

without the need for a reference area, s, and a weight, w,

the L/D for the converged p was compared tolhe L/D values

given by NASA's BET, so that the comparison is only dependent
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upon the two methods of parameter estimation. Figures 15

and 16 present in graphic form the comparisons of the

initial to the converged and the converged to the BET L/D

ratios, respectively. Figure 16 shows good correspondence

between the two methods of identifying the L/D ratio. The

BET L/D history is not restricted to be a smooth polynomial.

The beginning and end of the converged polynomial L/D

history does not correspond as well to the BET values.

This can be attributed to the assumption that xo was perfectly

known and to the use of polynomials of lower order than

may be necessary for the interval length (Figure 12, for

instance).
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V Conclusion

Summary

This report presented a nonlinear parameter identi-

fication algorithm that was used to find CL!' C D" and /1

time histories, derived from radar trajectory data, for

the Space Shuttle reentry. The algorithm, a Square-Root

Variable-Metric optimization technique, (Ref 4,9) provided

a fast and inexpensive method for obtaining good results

for the parameter histories, by minimizing the weighted

least sq~uares performance index, J, of the experimental

versus calculated state histories.

There were several programming considerations

discussed in Chapter III. The procedure used to execute

the one dimensional search was detailed, showing a need

to manipulate the tolerances for convergence and to vary

the step size when needed. Finding the best numerical

differentiation constant, E , was done by varying -9

until the most accurate estimate of the derivative was

obtained. This reduced errors due to computer round-off

and central difference formula truncation. Nondimensional

polynomial coefficients were also used to reduce these

errors. Finally, by inverting the magnitude of the

uncertainties given in the Appendix, the diagonal elements

of the W matrix were chosen.

The results were presented and analyzed in Chapter IV.
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Run 1 and Run 2 tested the mechanics of the algorithm

dependent upon the choice of interval length, polynomial

order, and weighting matrix. It was shown that the initial

parameter histories were close enough to the converged

values to give fairly rapid convergence. Run 3 used the

BET parameters as a comparison to the converged solution

using the BET state histories as the radar trajectory data.

This showed good correspondence between the two estimation

methods for a L/D ratio time history, hence, giving confi-

dence in the algorithm's effectiveness (Fig. 16). It was

noted that, because of the characteristics of polynomial

approximation and the assumption that x. was fully known,

the converged parameter histories may be inaccurate at

the ends of the time intervals. All three runs converged

well to the given experimental state histories (Tables I,

II, and III), but not all of the parameter history charact-

eristics were portrayed if the order of the polynomial fit

did not match correctly with the interval length.

Computer time was short, about 500 CP seconds (hence,

inexpensive) and was made shorter by choosing smaller order

polynomials.

Recommendations

This algorithm provides a relatively simple method for

identifying parameter histories. The results for the nonlinear
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state model, deterministic, Square-Root Variable-Metric

optimization routine corresponded well with the BET results

without the problems of matrix inversion. The computer

load is very manageable with 500 CP seconds as an average

time for fitting about a minute long interval with a sixth

order polynomial using the CDC Cyber 74.

Because the radar data is readily available for most

of the Space Shuttle reentry trajectory, this algorithm

could be useful for quickly yielding good parameter history

results. These results would allow evaluation of maneuvers

or unplanned motion without the long wait for NASA's BET.

This could perhaps be useful for speeding up the turn

around time between launches should any problems which

might arise during reentry need evaluation before the

next launch.

Redundant results are important when testing the

performance of a system. Using this parameter identifica-

tion process would give a second, redundant, means for

evaluating the accuracy of the BET data. Although NASA's

BET gives a full six DOF evaluation of the Space Shuttle's

reentry, such a comparison would inspire more confidence in

the BET results.

The method used here to identify parameters can also

be used where any parameters need to be found, as long as

an appropriate state model is given. The polynomial fits,
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one-dimensional search development, and weighting matrix

choice are all appropriate considerations whether using

this or a similar optimization technique. Therefore, the

results presented give insight to what can be achieved

in the field of nonstochastic parameter identification.

Further work with this algorithm could explore the

use of a full measurement covariance matrix inversion

as the weighting matrix. This would more accurately

describe the real world radar errors and thereby improve

the accuracy of the algorithm. Also, the state model

could be expanded to more accurately describe the Space

Shuttle three DOF motion. Spherical Earth, wind, and

noise modelling would all increase the accuracy of the

model, but at some degree of expense to the speed of

convergence, as the computational load increases

due to a more complex dynamical system model. The trade-off

of accuracy versus speed of convergence can be studied

using the results of these further studies and the results

presented in this report.
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Appendix

The following four tables are from Reference 8.

The first two tables, C-J. and C-2, show the weights and

apriori bias information for the Multisensor Report data.

Tables O-Jand Wshow the radar measurement mean and

uncertainties. The diagonal elements for the weighting

matrix were arrived at by combining the bias and uncertainty

magnitudes and inverting them. The first three diagonal

elements, representing states xl, x2, and x3 , are weighted

from the range magnitude and the last two diagonal elements,

representing x5 and x6 , are weighted from the azimuth and

elevation magnitudes. The fourth diagonal element, repre-

senting the weighting of the xA (velocity) state, was

given a value of magnitude between the range and azimuth

magnitudes since Doppler residual statistics were not

provided.
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I

*I ISENSOR WEIGHTS AND APRIORI BIAS INFORMATION FOR RUN NO._

WEIGHTS BIASES BIAS UNCERTAINTIES
* SENSOR

RANGE AZIMUTH ELEV. RANGE AZIMUTH ELEV. RANGE AZIMUTH ELEV.
(FEET) (DEG) (DEG) (FEET) (DEG) (DEG) (FEET) (DEG) (DEG)

FPS16/38 30.00 .008 .008 19.52 .00474 .00837 63.09 .03261 .03266

NASA
I FPS16 30.00 .008 .008 10.41 .00065 .01140 58.62 .03307 .02606

TPQ18SA 48 30.00 .008 .008 -38.25 .01682 .01991 65.66 .02749 .02993
CS 0.00 .003 .003 0.00 -.00143 -.00163 0.00 .00524 .00344

C4 0.00 .003 .003 0.00 .00318 -.00159 0.00 .00407 .00383

C5 0.00 .003 .003 0.00 -.00139 -.00197 0.00 .00496 .00287

C6 0.00 .003 .003 0.00 .00574 -.00191 0.00 .01010 .00435

C7 0.00 .003 .003 0.00 -.00379 .00296 0.00 .00627 .00509

TABLE C-1

BIAS ESTIMATION RESULTS AND UNCERTAINTIES FOR RUN NO. 1

S BIASES BIAS UNCERTAINTIES
SENSOR

-RANGE AZIMUTH ELEVATION RANGE AZIMUTH I ELEVATION
(FEET) (DEG) (DEG) (FEET) (DEG) (DEG)

AI

FPS16/38 27.87364 .00109 .02611 1.38904 .00035 .00039

NASA FPS16 17.88180 -.00161 .02940 1.29678 .00033 .00039

TPQ18 SA 48 -27.56410 .01939 .04245 1.76858 -.00038 .00044

CI 0.00000 -.00712 .00680 .00000 .00026 .00033

I C4 0.00000 .00281 .00476 .00000 .00019 .00026

l C5 0.00000 -.00280 .00504 .00000 .00021 .00027

C6 0.00000 .00632 .00498 .00000 .00020 .00025

C7 0.00000 -.01127 .01350 .00000 .00029 .00036

'I TABLE C-2
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IRESIDUAL STATISTICS FOR RUN NO. 1

SESRMEAN 
UNCERTAINTIES

RANGE AZIMUTH ELEVATION RANGE AZIMUTH ELEVATIONI _____ (FEET) .(DEG) (DEG) (FEET) (DEG) (DEG)

FPS16/38 .00273 -.00000 .00000 61.20924 .03209 .02937

INASA FPS16 .00252 -.00000 .00000 59.67920 .03065 .02285

gTPQ18 SA 48 .00404 .00000 .00000 64.70393 .02703 .02392

Cl - -.00000 .00002 - .00521 .00315

C4 - -.00000 .00001 - .00438 .00392

C5 - -.00000 .00002 - .00476 .00285

IC6 - .00.000 .00001 - .01114 .00439

C7 - -.00000 .00001 - .00639 .00427

TABLE D-1

POSITIONAL UNCERTAINTY STATISTICS FOR RUN NO. 1

COORDINATE MEAN (FEET) UNCERTAINTIES (FEET)

R SPHERICAL ERROR -43.76213 60.96327

fX TOTAL 14.33824 15.27715

Y TOTAL 25.19341 38.38616

Z TOTAL 31.88084 45.47689

X RANDOM 14.31515 15.25862

Y RANDOM 25.15378 38.33737

Z RANDOM 31.80159 45.39780

X SYSTEMATIC .80540 .76054

Y SYSTEMATIC 1.39732 1.94573

Z SYSTEMATIC 2.17653 2.73815

TABLE 0-2
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